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Abstract V /"
The application of volume rendering techniques to the display of surfaces from sampled scalar
functions of three spatial dimensions is explored. Fitting of geometric primitives to the sampled
data is not required. Images are formed by directly shading each sample and projecting it onto the
picture plane. Surface shading calculations are performed at every voxel with local gradient vec-
tors serving as surface normals. In a separate step, surface classification operators are applied to
obtain a partial opacity for every voxel. Operators that detect isovalue contour surfaces and region
boundary surfaces are presented. Independence of shading and classification calculations insures an
undistorted visualization of 3-D shape. Non-binary classification operators insure that small or
poorly defined features are not IosL The resulting colors and opacities am composited from back to
front along viewing rays to form an image. The technique is simple and fast, yet displays surfaces
exhibiting smooth silhouettes and few other aliasing artifacts. The use of selective blurring and
super-sampling to further improve image quality is also described. Examples from two applications
are given: molecular graphics and medical imaging.

1. Introduction

Visualization of scientific computations is a rapidly growing field within computer graphics.
A large subset of these applications involve sampled functions of three spatial dimensions, also
known as volume data. Surfaces are commonly used to visualize volume data because they suc-
cinctly present the 3-D configuration of complicated objects. In this paper, we explore the use of
isovalue contour surfaces to visualize electron density maps for molecular graphics, and the use of
region boundary surfaces to visualize computed tomography (CT) data for medical imaging.

The currently dominant techniques for displaying surfaces from volume data consist of apply-
ing a surface detector to the sample array, fitting geometric primitives to the detected surfaces, then
rendering these primitives using conventional surface rendering algorithms. The techniques differ
from one another mainly in the choice of primitives and the scale at which they are defined. In the
medical imaging field, a common approach is to apply thresholding to the volume data. The result-
ing binary representation can be rendered by trating l-voxels as opaque cubes having six polygo-
nal faces [1]. If this binary representation is augmented with the local grayscale gradient at each
voxel, substantial improvements in surface shading can be obtained [2-5]. Alternatively, edge
tracking can be applied on each slice to yield a set of contours defining features of interest, then a
mesh of polygons can be constructed connecting the contours on adjacent slices [6]. As the scale
of voxels approaches that of display pixels, it becomes feasible to apply a local surface detector at
each sample location. This yields a very large collection of voxel-sized polygons, which can be
rendered using standard algorithms [7]. In the molecular graphics field, methods for visualizing
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electr'on density maps include stacks of isovalue contour lines, ridge lines arranged in 3-space so as
to connect local maxima [8], and basket meshes representing isovalue contour surfaces [9].

All of these techniques suffer from the common problem of having to make a binary
classification decision: either a surface passes through the current voxel or it does not. As a result,
these methods often exhibit false positives (spurious surfaces) or false negatives (erroneous holes in
surfaces), particularly in the presence of small or poorly defined features.

To avoid these problems, researchers have begun exploring the notion of volume rendering
wherein the intermediate geometric representation is omitted. Images are formed by shading all
data samples and projecting them onto the picture plane. The lack of explicit geometry does not
preclude the display of surfaces, as will be demonstrated in this paper. The key improvement
offered by volume rendering is that it provides a mechanism for displaying weak or fuzzy surfaces.
This capability allows us to relax the requirement, inherent when using geometric representations,
that a surface be either present or absent at a given l-ication. This in turn frees us from the neces-
sity of making binary classification decisions. Another advantage of volume rendering is that it
allows us to separate shading and classification operations. This separation implies that the accu-
racy of surface shading, hence the apparent orientation of surfaces, does not depend on the success
or failure of classification. This robustness can be contrasted with rendering techniques in which
only voxels lying on detected surfaces are shaded. In such systems, any errors in classification
result in incorrectly oriented surfaces.

Smith has written an excellent introduction to volume rendering [10]. Its application to CT
data has been demonstrated by PIXAR [11], but no details of their approach have been published.
The technique described in this paper grew out of the author's earlier work on the use of points as
a rendering primitive [12]. Its application to CT data was first reported in June, 1987 [13], and was
presented at the SPIE Medical Imaging II conference in January, 1988 (14].

2. Rendering pipeline

The volume rendering pipeline used in this paper is summarized in figure 1. We begin with
an array of acquired values fo(xi) at voxel locations x, = (x,y,z&). The first step is data preparation
which may include correction for non-orthogonal sampling grids in electron density maps, correc-
tion for patient motion in CT data, contrast enhancement, and interpolation of additional samples.
The output of this step is an array of prepared values fi(xO. This array is used as input to the shad-
ing model described in section 3, yielding an array of voxel colors cx.(xt), X = rgb. In a separate
step, the array of prepared values is used as input to one of the classification procedures described
in section 4, yielding an array of voxei opacities a(xo). Rays are then cast into these two arrays
from the observer eyepoinL For each ray, a vector of sample colors c1(x) and opacities xox) is
computed by re-sampling the voxel database at K evenly spaced locations x, = (x;-,y,z&) along the
ray and tri-linearly interpolating from the colors and opacities in the eight voxels closest to each
sample location as shown in figure 2. Finally, a fully opaque background of color c&4.x is draped
behind the dataset and the re-sampled colors and opacities are merged with each other and with the
background by compositing in back-to-front order to yield a single color Cx,(u) for the ray, and,
since only one ray is cast per image pixel, for the pixel location u1 = (a.,) as well.

The compositing calculations referMd to above are simply linear interpolations. Specifically.
the color C,4,(ul) of the ray as it leaves each sample location is related to the color Cix(ul) of the
ray as it enters and the color c%(x) and opacity c(xi) at that rumple location by the transparency
formula

C.W.,(O - C%(X(l - xV) + c&xia(xi.

Solving for pixel color Cx(ul) in trum of the vector of sample colors c(x) and opacities t(xl)
along the associated viewing ray gives
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where c).(x;.,-Yzo) =Cb. and aL(x,,zo) =1

3. Shading

Using the rendering pipeline presented above, the mapping from acquired data to color pro-
vides 3-D shape cues, but does not participate in the classification operation. Accordingly, a shad-
ing model was selected that provides a satisfactory illusion of smooth surfaces at a reasonable Cost.
It is not the main point of the paper and is presented mainly for completeness. The model chosen
is due to Phong (15):

c&x = +

k + i (N(xi)-L) + k,..(N(x))(2)

where

cx(xo) = X'th component of color at voxel location xi, X = r,gb,

c,. = X'th component of color of parallel light source,

kx = ambient reflection coefficient for X'th color component, 0

kx = diffuse reflection coefficient for X'th color component,

k,.x = specular reflection coefficient for X'th color component,

n = exponent used to approximate highlight,

k1, k2 = constants used in linear approximation of depth-cueing, Accession For

NTIS GRA&I
d(x) = perpendicular distance from picture plane to voxel location xi, DTIC TAB 0

Unannounced
N(xo) = surface normal at voxel location xi, Justifioatio

L = normalized vector in direction of light source, __ _

Distrlbution/
H = normalized vector in direction of maximum highlight. Availability Codes

Since a parallel light source is used, L is a constant. Furthermore, Avail and/or 0
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V = normalized vector in direction of obseer. - [ CopY -
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Since an orthographic projection is used, V and hence H are also constants. Finally, the surface
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normal is given by

N(xz)=

where the gradient vector Vflxo is approximated using the operator

Vfl ) VxyiZ),

4 XOJyz+ 1) - AXiYijZk-)]

4. Classification

The mapping from acquired data to opacity performs the essential task of surface
classification. We will first consider the rendering of isovalue contour surfaces in electron density
maps, i.e. surfaces defined by points of equal electron density. We will then consider the render-
ing of region boundary surfaces in computed tomography (CT) data, i.e. surfaces bounding tissues
of constant CT number.

4.1. Isovalue contour surfaces

Determining the structure of large molecules is a difficult problem. The method most com-
monly used is ab iniiio interpretation of electron density maps, which represent the averaged den-
sity of a molecule's electrons as a function of position in 3-space. These maps are obtained from
X-ray diffraction studies of crystallized samples of the molecule.

One obvious way to display isovalue surfaces is to opaquely render all voxels having values
greater than some threshold. This produces 3-D regions of opaque voxels the outermost layer of
which is the desired isovalue surface. Unfortunately, this solution prevents display of multiple con-
centric semi-transparent surfaces, a very useful capability. Using a window in place of a threshold
does not solve the problem. If the window is too narrow, holes appear. If it too wide, display of
multiple surfaces is constrained. In addition, the use of thresholds and windows introduces artifacts
into the image that are not present in the data.

The classification procedure employed in this study begins by assigning an opacity a, to vox-
els having selected value f,, and assigning an opacity of zero to all other voxels. In order to avoid
aliasing artifacts, we would also like voxels having values close tof, to be assigned opacities close
to oa, The most pleasing image is obtained if the thickness of this transition region stays constant
throughout the volume. We approximate this effect by having the opacity fall off as we move
away from the selected value at a rate inversely proportional to the magnitude of the local gradient
vector.

Thi mapping is implemented using the express ion
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fxi) + r IVfxj)l

s0 otherwise

where r is the desired thickness in voxels of the transition region, and the gradient vector is approx-
imated using the operator given in section 3. A graph of c.(xi) as a function of Jx,) and IVf(xo)l for
typical values off,, ct,, and r is shown in figure 3.

If more than one isovalue surface is to be displayed in a single image, they can be classified
separately and their opacities combined. Specifically, given selected values

f'. n = 1.... ,. N 1. opacities a, and transition region thicknesses r,, we can use equation (3)
to compute ct.(xo, then apply the relation

N

cax( ) = 1 - l ( - ).

4.2. Region boundary surfaces

From a densitometric point of view, the human body is a complex arrangement of biological
tissues each of which is fairly homogeneous and of predictable density. Clinicians are mostly
interested in the boundaries between tissues, from which the sizes and spatial relationships of ana-
tomical features can be inferred.

Although many researchers use isovalue surfaces for the display of medical data, it is not
clear that they are well suited for that purpose. The reason can be explained briefly as follows.
Given an anatomical scene containing two tissue types A and B having values fA and f,, where

f,, <f,. data acquisition will produce voxels having values fix) such that f, ':9 Ax) if.,. Thin
features of tissue type B may be represented by regions in which all voxels bear values less than
f,,. Indeed, ther is no threshold value greater than LA guaranteed to detect arbitrarily thin regions

of type B, and thresholds close to f, A are as likely to detect noise as signal.

The procedure employed in this study is based on the following simplified model of anatomi-
cal scenes and the CT scanning process. We assume tot scenes contain an arbitrary number of tis-
sue types bearing CT numbers falling within a small neighborhood of some known value. We
further assume that tissues of each type touch tissues of at most two other types in a given scene.
Finally, we assume that, if we order the types by CT number, then each type touches only types
adjacent to it in the ordering. Formally, given N tissue types bearing CT numbers
f,,n= 1 .... NZ 1 such that , <f,- 1 ,m- M ... ,N-l, then no tissue of CT nwnberf,
touches any tissue of CT number f, , In1-nj > I.

If thesn criteria mre met. each tissue type can be assigned an opacity and a picewin ina

mapping can be conmaucted that convens voxel value f,. to opacity a,, voxel value f,., so opacity

06.9 ad intermediate voxl values to intermediate opacities. Note thot all voxel we typially
mapped to s me zeeao opacity wi! will thus contribut to die MiWa image. This A PPhiue s
do thin regl= of tisue will still appear in dhe image, even if only as fam wisps. Note dom tha
vilieof do adjacency rira leads to voxes dot catwoot be unaibiguusly clified~ =s-

aemonto an eg lion bondr or =Whe and humc cuem be itdeser correcdy using dhi
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The superimposition of multiple semi-transparent surfaces such as skin and bone can substar-
tially enhance the comprehension of CT data. In order to obtain such effects using volume render-
ing, we would like to suppress the opacity of tissue interiors while enhancing the opacity of their
bounding surfaces. We implement this by scaling the opacities computed above by the magnitude
of the local gradient vector.

Combining these two operations, we obtain a set of expressions

I .., -fe. .4

C(x,) = IVfAx,)t f (4)

ca. I _
0 otherwise

for n = 1 .... N-l, N > I. The gradient vector is approximated using the operator given in sec-
tion 3. A graph of a(x,) as a function of fix) and MVf(xt)l for three tissue types A, B, and C. having
typical values off, Af f z,* .otC 1 A ,. and ctc is shown in figure 4.

5. Discussion

5.1. Computational complexity

One of the strengths of the rendering method presented in this paper is its modularity. By
storing intermediate results at various places in the pipeline, the cost of generating a new image
after a change in shading or classification parameters is minimized. Let us consider some typical
cases.

Given acquired value ftxt) and gradient magnitude IVfx,)l, the mapping to opacity ct(xi) can
be implemented with one lookup table reference. This implies that if we store gradient magnitudes
for all voxels, computation of new opacities following a change in classification parame4ers entails
only generation of a new lookup table followed by one table reference per voxel.

The cost of computing new colors cx(x.) folowing a change in observer direction V, light
source direction L. or other shading parameter is mor substantial. Effective rotation sequences
can be generated, however, using a single set of colors. The visual manifestation of fixing the
shading is that light sources appear to travel round with the data as it rotates and highlights are
incorrect. Since we ae visualizing imaginary or invisible phenomena anyway, observers are wl-
dom troubled by this etecL

The most efficient way to produce a rotation sequence is then to hold both colors and opaci-
ties constant and alter only the direction in which rays ar cast. If we amme a square image n
pixels wide and use onhographic projection, in which cue sample coordinaes can be efficiendy
calculated using differenctag, the combined am of my tacing. fe-mnplinlf m compositing to
compute R2 pixels is 3KO2 additions 2Kn2 tn-linear intrpolations, md Hw inMpolltis,
where K is the number of sample locations along each ray.
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5.2. Image quality

Although the notation used in equation (1) has been borrowed from the literature of image
compositing [16], the analogy is not exact, and the differences are fundamental. Volume data con-
sists of samples taken from a bandlimited 3-D scene, whereas the data acquired from an image
digiizer consists of samples taken from a bandlimited 2-D projection of a 3-D scene. Unless we
reconstruct the 3-D scene that gave rise to our volume data, we cannot compute an accurate projec-
tion of iL Volume rendering performs no such reconstruction. Image quality is therefore limited
by the number of viewing rays. In the current implementation, we cast one ray per pixel. Such
point sampling would normally produce strong aliasing, but, by using non-binary classification deci-
sions, we carry much of the bandlimiting inherent in the acquired data over into the image, sub-
stantially reducing aliasing artifacts. Stated another way, we are depending on 3-D bandlimiting to
avoid aliasing in 2-D projections.

Within these limitations, there are two ways to improve image quality, blurring and super-
sampling. If the aray of acquired values are blurred slightly during data preparatioa, the oversharp
surface silhouettes occasionally exhibited by volume renderings are softened. Alternatively, we can
apply blurring to the opacities generated by the classification procedure, but leave the* shading
untouched. This has the effect of softening silhouettes without adversely affecting the crispness of
surface detail.

The decision to reduce aliasing at the expense of resolution arises from two conflicting goals:
generating artfact-free images and keeping rendering costs low. In practice, the slight loss in
image sharpness might not be disadvantageous. Indeed, it is not clear that the accuracy afforded by
more expensive visibility calculations is useful, at least for the types of data considered in this
study. Blurry silhouettes have less visual impact, but they reflect the true imprecision in our
knowledge of surface locations.

An alternative means for improving image quality is super-sampling. The basic idea is to
interpolate additional samples between the acquired ones prior to compositing. If the interpolation
method is a good one, the accuracy of the visibility calculations is improved, reducing some kinds
of aliasing. Another option is to apply this interpolation during data prepartion. Although this
alternative substantially increases computational expense throughout the remainder of the pipeline,
it improves the accuracy of our shading and classification calculations as well as our visibility.

6. Implementation and results

The dataset used in the molecular graphics study is a 113 x 113 x 113 voxel portion of an
electron density map for the protein Cytochrome BS. Figure 5 shows four slices spaced 10 voxels
apart in this dataset. Each whitish cloud represents a single atom. Using the shading and
classification calculations described in sections 3 and 4.1, colors aid opacities were computed for
each voxel in the expanded daunt. These calculations required 5 minutes on a SUN 4/280 having
32MB of main memory. Ray traing and compositing were performed as described in section 2and took 40 minutes, yielding the image in figure 6.

The daaset used in the medical imaging study is a CT study of a cadaver and was acquired
as 113 slices of 256 x 256 samples each. Using the shading and classification calculations
described in sections 3 and 4.2 two sets of colon md opacities wr computed, one showing the
ar-skin interface and a second showing the tisme-bone interface. The computation of each set
required 20 minutes. Using the compouiting algorithm described in section 2. two vie were then
compued from each set of colos md opacities, producing four images in al, a shown in figure 7.Ma €ompntion of each view reuied a additiona 20 minutes. Mw hormmAl bod through the
padent's temb in all of don es w ae artitas due to watterig of" X-rays from deta fillings
and we preset in tw acquired date. Mw tbends acron bar forad a~ ndu er ar tn tn doiw.



skin images are gauze bandages used to immobilize her head during scanning. Her skin and nose
cartilage are rendered semi-ransparently over the bone surface in the tissue-bone images.

Figure 8 was generated by combining halves from each of the two sets of colors and opaci-
ties already computed for figure 7. Heightened transparency of the temporal bone and the bones
surrounding the maxillary sinuses - more evident in moving sequences than in a static view- is due
to generalized osteoporosis. It is worth noting that rendering techniques employing binary
classification decisions would likely display holes here instead of thin, wispy surfaces.

The dataset used in figures 9 and 10 is of the same cadaver, but was acquired as 113 slices of
512 x 512 samples each. Figure 9 was generated using the same procedure as for figure 7, but
casting four rays per slice in the verical direction in order to correct for the aspect ratio of the
dataset. Figure 10 was generated by expanding the dataset to 452 slices using a cubic B-spline in
the vertical direction, then generating an image from the larger dataset by casting one ray per slice.
As expected, more detail is apparent in figure 10 than figure 9.

7. Conclusions

Volume rendering has been shown to be an effective modality for the display of surfaces from sam-
pled scalar functions of three spatial dimensions. As demonstrated by the figures. it can generate
images exhibiting approximately equivalent resolution, yet fewer interpretation errors, than tech-
niques relying on geometric primitives.

Despite its advantages, volume rendering has several problems. The omission of an inter-
mediate geometric representation makes selection of appropriate shading parameters critical to the
effectiveness of the visualization. Slight changes in opacity ramps or interpolation methods radi-
cally alter the features that are seen as well as the overall quality of the image. For example, the
thickness of the transition region surrounding the isovalue contour surfaces described in section 4.1
stays constant only if the local gradient magnitude stays constant within a radius of r voxels around
each point on the surface. The time and ensemble averaging inherent in X-ray crystallography usu-
ally yields suitable data, but there are considerable variations among datasets. Algorithms are
needed that automatically select an optimum value for r based on the characteristics of a particular
dataset.

Volume rendering is also very sensitive to artifacts in the acquisition process. For example,
CT scanners generally have anisotropic spatial sensitivity. This problem manifests itself as striping
in images. With live subjects, patient motion is also a serious problem. Since shading calculations
are strongly dependent on the orientation of the local gradient, slight mis-alignments between adja-
cent slices produce strong stiping.

An issue related specifically to region boundary surfaces is the rendering of datasets not
meeting the adjacency criteria described in section 4.2. This includes most internal soft tissue
organs in CT data. One simple solution would be for users to interactively clip or carve away
unwanted tissues, thus isolating subsets of the acquired data that meet the adjacency criteria. Since
the user or algorithm is not called upon to define geometry, but merely to isolate regions of
interest, this appmach promises to be easier and to produce beter images than chniques involvingmfwe fitting. A mom sophisticatd approah would be to combine volume rendering with high-
level object definition methods in an interactive setting. Initial visualization, made without the
benefit of object definition, would be used to guide cene analys and segnentation algorithms.
which would in tm be used to isolate regions of intress., producing a better viialitio. If the
output of such segmentation algordtms kicluded confidence levels or probbM they could be
mapped to opacity and thus modulate the app ce of the image.

Although this paper focum on disay of msfac, the same pipeline cm be ewly modifed
to render int tiial volumes as somi-urmnspnnt gels. Color ad axiom am be added to represent
such variables as radieft m@ntude or womical time type, Viualiatons combining smpled
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and geometric data also hold much promise. For example, it might be useful to superimpose ball-
and-stick molecular models onto electron density maps or medical prostheses onto CT scans. To
obtain correct visibility, a true 3-D merge of the sampled and geometric data must be performed.
One possible solution is to scan-convert the geometry directly into the sampled array and render the
ensemble. Alternatively, classical ray tracing of the geometry can be incorporated directly into the
volume rendering pipeline. Another useful tool would be the ability to perform a true 3-1) merge

of two or more visualizations, allowing, for example, the superimposition of radiation treatment
planning isodose surfaces over CT data.

The prospects for rapid interactive manipulation of volume data are encouraging. By pre- I
computing colors and opacities and storing them in intermediate 3-D datasets, we simplify the
image generation problem to one of geometrically transforming two values per voxel and composit-
ing the results. One promising technique for speeding up these transformations is to combine a 3-
pass version of 2-pass texture mapping [17] with compositing. By re-sampling separately in each
of three orthogonal directions, computational expense is reduced. Given a suitably interpolated
sample array, it might be possible to omit the third pass entirely, compositing transformed 2-D
slices together to form an image. This further suggests that hardware implementations might be
feasible. A recent survey of architectures for rendering voxel data is given by Kaufmnan 118). A

suitably interconnected 2-1) array of processors with sufficient backing storage might be capable of
producing visualizations of volume datasets in real-time or near real-time.
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Figure 1 - Overview of volume rendering pipeline
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Figure 2 - Ray tracing / re-sampling steps
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Figure 3 - Calculation of opacities for isovalue contour surfaces
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Figure 4 - Calculation of opacities for region boundary surfacesp
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Figure 5 - Slices from 113 x 113 x 113 voxel electron density map

II

Figure 6 - Volume rendering of isovalue contour surface
from dataset shown in figure 5



Figure 7 - Volume rendering of region boundary surfaces
from 256 x 256 x 113 voxel CT dataset

Figure 8- Rotatedviw of same datset asin figur7



II
Figure 9 - Volume rendering of1512 x 512 x 113 voxel CT dlataset

Figure 10 - Super-sampled volume rendering of same clataset as in figure 9
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